नीचे दी गई प्रेक्षणों के दो समूहों की सांख्यिकी का विचार कीजिए
आकार | माध्य | प्रसरण | |
प्रेक्षण $I$ | $10$ | $2$ | $2$ |
प्रेक्षण $II$ | $n$ | $3$ | $1$ |
यदि इन दोनों प्रेक्षणों को मिलाकर बने समूह का प्रसरण $\frac{17}{9}$ है, तो $n$ का मान बराबर है
$8$
$10$
$5$
$15$
$10$ प्रेक्षणों $\mathrm{x}_1, \mathrm{x}_2, \ldots, \mathrm{x}_{10}$ के लिए $\sum_{\mathrm{i}=1}^{10}\left(\mathrm{x}_{\mathrm{i}}-\alpha\right)=2$ तथा $\sum_{i=1}^{10}\left(x_i-\beta\right)^2=40$ हैं, जहाँ $\alpha$ तथा $\beta$ धनात्मक पूर्णांक है। माना इन प्रेक्षणों के माध्य तथा प्रसरण क्रमशः $\frac{6}{5}$ तथा $\frac{84}{25}$ है। तो $\frac{\beta}{\alpha}$ बराबर है:
माना बंटन
$X_i$ | $0$ | $1$ | $2$ | $3$ | $4$ | $5$ |
$f_i$ | $k+2$ | $2k$ | $K^{2}-1$ | $K^{2}-1$ | $K^{2}-1$ | $k-3$ |
जहाँ $\sum \mathrm{f}_{\mathrm{i}}=62$ है, का माध्य $\mu$ तथा मानक विचलन $\sigma$ हैं। यदि $[\mathrm{x}]$ महत्तम पूर्णांक $\leq \mathrm{x}$ है, तो $\left[\mu^2+\sigma^2\right]$ बराबर है
निम्नलिखित आँकड़ों के लिए माध्य व प्रसरण ज्ञात कीजिए।
${x_i}$ | $6$ | $10$ | $14$ | $18$ | $24$ | $28$ | $30$ |
${f_i}$ | $2$ | $4$ | $7$ | $12$ | $8$ | $4$ | $3$ |
संख्याओं $1, 2, 3, 4, 5, 6$ का माध्य तथा मानक विचलन है
$10$ प्रेक्षणों का माध्य $50$ है, इस माध्य से विचलनों के वर्गों का योग $250$ है। प्रसरण गुणांक का मान......$\%$ है